A Dynamic Tradeoff Between Active and Passive Corruptions in Secure Multi-Party Computation

نویسندگان

  • Martin Hirt
  • Christoph Lucas
  • Ueli Maurer
چکیده

At STOC ’87, Goldreich et al. presented two protocols for secure multi-party computation (MPC) among n parties: The first protocol provides passive security against t < n corrupted parties. The second protocol provides even active security, but only against t < n/2 corrupted parties. Although these protocols provide security against the provably highest possible number of corruptions, each of them has its limitation: The first protocol is rendered completely insecure in presence of a single active corruption, and the second protocol is rendered completely insecure in presence of ⌈n/2⌉ passive corruptions. At Crypto 2006, Ishai et al. combined these two protocols into a single protocol which provides passive security against t < n corruptions and active security against t < n/2 corruptions. This protocol unifies the security guarantees of the passive world and the active world (“best of both worlds”). However, the corruption threshold t < n can be tolerated only when all corruptions are passive. With a single active corruption, the threshold is reduced to t < n/2. As our main result, we introduce a dynamic tradeoff between active and passive corruptions: We present a protocol which provides security against t < n passive corruptions, against t < n/2 active corruptions, and everything in between. In particular, our protocol provides full security against k active corruptions, as long as less than n − k parties are corrupted in total, for any unknown k. The main technical contribution is a new secret sharing scheme that, in the reconstruction phase, releases secrecy gradually. This allows to construct non-robust MPC protocols which, in case of an abort, still provide some level of secrecy. Furthermore, using similar techniques, we also construct protocols for reactive MPC with hybrid security, i.e., different thresholds for secrecy, correctness, robustness, and fairness. Intuitively, the more corrupted parties, the less security is guaranteed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum: A Dynamic Tradeoff between Active and Passive Corruptions in Secure Multi-Party Computation

At STOC ’87, Goldreich et al. presented two protocols for secure multi-party computation (MPC) among n parties: The first protocol provides passive security against t < n corrupted parties. The second protocol provides even active security, but only against t < n/2 corrupted parties. Although these protocols provide security against the provably highest possible number of corruptions, each of t...

متن کامل

Passive Corruption in Statistical Multi-Party Computation

The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol that tolerates an adversary corrupting a subset of the parties, preserving certain security guarantees like correctness, secrecy, robustness, and fairness. Corruptions can be either passive or active: A pas...

متن کامل

A Unified Characterization of Completeness and Triviality for Secure Function Evaluation

We present unified combinatorial characterizations of completeness for 2-party secure function evaluation (SFE) against passive and active corruptions in the information-theoretic setting, so that all known characterizations appear as special cases. In doing so we develop new technical concepts. We define several notions of isomorphism of SFE functionalities and define the “kernel” of an SFE fu...

متن کامل

Graceful Degradation in Multi-Party Computation

The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol that tolerates an adversary corrupting a subset of the participating parties, and still preserves certain security guarantees. Most MPC protocols provide security guarantees in an all-or-nothing fashion: Ei...

متن کامل

The Price of Low Communication in Secure Multi-party Computation

Traditional protocols for secure multi-party computation among n parties communicate at least a linear (in n) number of bits, even when computing very simple functions. In this work we investigate the feasibility of protocols with sublinear communication complexity. Concretely, we consider two clients, one of which may be corrupted, who wish to perform some “small” joint computation using n ser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013